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ABSTRACT

Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive 

deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for 

extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of 
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Statement of the problem studied: 

Nerve agents can cause seizures after acute intoxication and these seizures can lead 
eventually to neuronal damage. The purpose of the present study was to assess the extent to 
which seizure development after exposure of rats to soman resulted in the up-regulation of 
cyclooxygenase 2 (COX-2) in brain areas known to be damaged by soman. 

Summary of the results: 

Soman causes a time-dependent increase in COX-2 expression  

 The effects of soman on COX-2 protein expression were examined by 
immunohistochemical analysis over a broad time course (i.e., 4 hr to 7 days after soman). 
Counts of COX-2 positive cells revealed a somewhat delayed response to soman (Fig 1). Very 
few cells expressing COX-2 were seen from 4-12 hr after soman treatment (data not shown). By 
24-48 hr, large numbers of COX-2 positive cells were seen in hippocampal CA3 regions and 
especially the dentate gyrus (Fig. 1A and 1B) as well as in the amygdala (Fig. 1C) and piriform 
cortex (Fig. 1D). By 7 days COX-2 levels declined slightly below those seen at 48 hr in each 
brain region, but remained significantly elevated over control. Increases in COX-2 
immunoreactivity were observed in cingulate cortex and ventral thalamus as well (data not 
shown).  

Soman increases COX-2 expression at the cellular level in a highly circumscribed manner as 
revealed by immunohistochemistry 

 Immunohistochemical analyses revealed the highly circumscribed effect of soman on 
COX-2 expression at the cellular level. After treatment with soman (48 hr), COX-2 positive cells 
essentially define the anatomical facets of the dentate gyrus, CA3 and CA1 regions of the 
hippocampus (Fig 2). Cells expressing COX-2 immunoreactivity were small and uniformly 
round. The piriform cortex and amygdala also showed substantial increases in the number of 
COX-2 immunoreactive cells after soman (Fig 3). These cells were somewhat more diffuse in 
the piriform cortex and many displayed an extensive axonal network. COX-2 positive cells were 
more densely packed in the amygdala of soman-treated animals by comparison to the piriform 
cortex (see Fig 3). Soman did not change the expression of COX-1 at any time (4 hr to 7 days) 
in any brain region examined (Fig 4). COX-1 immunoreactivity was very weak in hippocampus 
of controls (Fig. 4A) and soman treated rats (Fig. 4B). COX-1 containing cells were also seen 
throughout the amygdala with no apparent alteration by soman in their number or in the intensity 
of their staining for COX-1 (Fig. 4C and 4D).  

Soman-induced increases COX-2 protein levels are correlated with seizure intensity 

 Immunoblot analysis provided independent confirmation of soman effects on COX-2 
expression. Soman caused increases in hippocampal COX-2 that varied considerably (Fig 5A). 
Because all rats were injected with the same soman dose (i.e., 1.2 X LD50), these results 
suggest that the changes in COX-2 were not linked to soman per se.  All rats were scored for 
seizures as described in Materials and Methods and behavioral scores were plotted versus the 
fold-increase in COX-2 immunoreactivity on western blots. This analysis indicated that COX-2 



expression was positively correlated with seizure intensity (Fig 5B). Soman-treated rats showing 
no fasciculations, tremors or seizure activity (behavioral score of 0) showed slight increases in 
COX-2 (~1.5-2 fold over controls). Animals showing mild fasciculations (behavioral score of 1) 
and tremor (behavioral score of 2) showed increases in COX-2 expression that increased by 4-
10 fold. By far, the largest increase in COX-2 expression (7-15-fold) was seen in rats showing 
the most intense seizures (behavioral score of 3). Similar results for COX-2 expression were 
seen in other brain regions (data not shown). Immunoblot analyses also confirmed that 
hippocampal COX-1 protein levels were not altered by soman at any seizure intensity (see Figs 
5A and 5B).  

Soman increases COX-2 expression in neurons and not in microglia or astrocytes 

 COX-2 can be expressed in neurons and by activated microglia and astrocytes 
(Minghetti and Levi, 1998) so efforts were made to identify the cell-type in which COX-2 
expression was increased by soman. First, hippocampus was examined 48 hr after soman 
exposure for changes in astrocyte and microglial reactivity using GFAP and Isolectin B4, 
respectively. The density and staining intensity of astrocytes were increased substantially in 
hippocampus after soman (Fig. 6B) by comparison to controls (Fig. 6A). Microglial activation in 
hippocampus was also increased dramatically by soman (Fig. 6D) by comparison to controls 
(Fig. 6C). In light of this soman-induced gliosis in hippocampus, brain sections were labeled with 
COX-2 antibodies followed by co-labeling with antibodies against either NeuN to identify 
neurons, antibodies against GFAP to identify astrocytes, or ILB4 to identify activated microglia. 
Patterns of COX-2 (Fig. 7A) and NeuN (Fig. 7B) fluorescence in hippocampus were very similar 
and when merged, a near-total overlap of cells that are immuno-positive for both COX-2 and 
NeuN was evident (Fig 7C). The soman-induced microglial activation is evident throughout the 
hippocampus (Fig. 7E) and it is clear from the merged image (Fig 7F) that the pattern of COX-2 
fluorescence staining shows no overlap with that of microglia. Finally, intense GFAP reactivity is 
evident after soman treatment in the area between CA3 and the dentate gyrus of the 
hippocampus (Fig 7H), and the lack of overlap of COX-2 containing cells with astrocytes is 
apparent in the merged image (Fig 7I). The morphology of COX-2 containing cells in the 
hippocampus of soman treated rats also gives a clear indication of their identity as neurons. 
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